Stanford Code Poetry Slam 2.0

23 January 2015
Wallenberg Hall 124

Poetizer.py + Poemreader.py, Ross
Goodwin

https://github.com/rossgoodwin/poetizer/blob/master/poetizer.py
https://github.com/rossgoodwin/poetizer/blob/master/poemreader.py

Angler: In Search of Target Fish,
Alireza Ebrahimi

O Angler, plan fish net to sea “Fish Is Found”
Throw thy net for fish catch seize. Or if ever, “The Not Found”
Rise, gather, what will be End plan sequence, solemn and true.

Set goal target, enter sea.

Elusive fish, come to me. Dissatisfied Angler what to do but

Lift thy load, in strong sea breeze Think new fish with much more heart
Wonder whether should re-do, alas

Seek and search, find what is mine Adjust condition; include new class

Stir the net, go round and round Begin anew amass

Grab each fish, one by one With much more vigor, again to start.

Compare to target, everyone
Elusive fish, decide what’s won
Repetitive, tireless, until found.

Frustrated, dismayed, the Angler will be
As hope springs anew when target comes to view
Joy in Angler’s heart abound

#include <iostream>

#include <fstream>

using namespace std;

main(){

string mindfish, netfish ;

while (1){ //infinite loop intended
cout << “ENTER THE DESIRED FISH: “;
cin >> mindfish;

ifstream fin(“seafish.txt”);

while(fin >> netfish){

if(mindfish == netfish){

cout << “FISH IS FOUND “<<endl;
fin.close();

return 1;}//end if

}// inner loop

cout<<” NOT FOUND-CHANGE YOUR MIND FISH OR EXPAND FISH NET:”<<endl;
fin.close();

}// outer loop

return O;

}// end main

SHORT CIRCUIT WEEK, Derek Dadian-
Smith

SHORT CIRCUIT WEEK

stress = True
clarity = True
sunday = stress or clarity

doubt = True
freedom = True
monday = doubt or freedom

distraction = True
motivation = True
tuesday = distraction or motivation

darkness = True
inspiration = True
wednesday = darkness or inspiration

fear = True
creation = True
thursday = fear or creation

depression = True
love = True
friday = depression or love

suffering = True

enlightenment = True
saturday = suffering or enlightenment

d.w.d-s

Addiction, Oishi Banerjee

void addiction(){

int mind = 1;

while (true){
//what goes around wraps around
//and we climb the peaks to find they touch the abyss
mind = mind+1;
if (mind<0){

break;

Modulate a Thousand Times More,
Peter Wildman

https://vimeo.com/107008770

long theTime;

color beBlue = color(0, 0, 253);

long forNow;

color beGreen = color(0, 255, 0);

color theBleedingRed = color(255, 0, 0);
long more = 2;

long foreverInAMoment;

void setup() {
background(0);
size(1000, 1000);
theTime = 1000 * more;

}

void draw() {
for(long ingTheTime =
foreverinAMoment;
theTime > 0;
theTime --) {
set(int
(random
(int
(theTime),
(int
(foreverinAMoment))),
222, theBleedingRed);

set(1+1+1+ int
(random
(1,1*1*1000+more)),
int
(theTime +
(random
(1+2,1000+more)

),

2+beBlue);
set(int
(foreverinAMoment) + int
(random
(1,1000)),
int
(theTime +
int
(random
(1+2,1000+more)
),
2+beGreen);
for(int
thisMoment = 2; beGreen > 2 % 1000*more;
//still

thisMoment++){

Modern Narrative, Steven Wingate

print ("Modern Narrative (TM) by Steven Wingate")

print ("Adapted from Through the Park, copyright (c) 2013 Nick Montfort <nickm@nickm.com>")
import random, textwrap

foriin range(0, 7):
text = ["The hero discovers a hidden wound",
"The hero and sidekick indulge in peaceful, innocent pleasure",
"Sexual tension escalates",
"The calm before the storm, featuring a fleeting recognition of the hero's need for companionship",
"The hero and romantic interest engage in public pleasure that verges on a declaration of love",
"Hero and sidekick declare that the world must be saved through love",

"A collective moment of introspection in which all principals question whether the current endavor is
worthwhile",

"A private moment of introspection in which the hero questions his/her self-worth",
"A musical scene which uplifts a community that will soon be threatened with destruction”,
"A musical scene which uplifts a community that has been saved",

"A penultimate conflict, easily misinterpreted as the final conflict by those untrained in modern
narrative",

"The sidekick dies but is returned to life through the hero's ministrations”,
"The intrinsic value of fidelity to the self is called into question by all",
"The enemy, though nearly victorious, is rebuffed and reduced in power",
"The enemy, temporarily defeated but encouraged by his/her increased powers, retreats",
"The romantic interest saves the hero from the temptations of a henchman”,
"The team disbands in despair and reunites only hesitantly",
"The team, on the verge of fracture, bands together with renewed energy",
"Everything is explained by the master/mentor",
"Peace returns to the community and the principals' emotional contradictions are healthily resolved",
"The romantic interest, blinded by grief and remorse, falls into a trap and unwittingly abets the enemy",
"Romance flares up between the hero and romantic interest, but is mutually spurned”,
"The hero is congratulated for saving the world once more",
"The hero returns home to find that things are not as believed",
"A misanthropic moment for the hero, caused by the dastardly machinations of a henchman",
"A henchman dies ignominiously",

"A henchman is transformed into an ignominious animal, its nature reflecting said henchman's quasi-
bestial greed",

"The sidekick, exasperated by the hero's sudden personality change, nearly abandons the quest”,
"Ossified tropes from previous examples of the genre, as necessary",]
phrases = 6 + random.randint(1,4)
while len(text) > phrases:
text.remove(random.choice(text))
print ("\nModern Narrative (TM) Book " + str(i+1) + "\n\n" +\
textwrap fill(". ... ".join(text) + ".", 60) + "\n\n\n")

fidelity, Guilherme Kerr

<SCRIPT LANGUAGE=javascript>

<l—

fidelity = function(still){
love={poem:document,search:{'for':'♥'},last:window,
I:{had:'a'},'true":'love’'| | 'for a'},vainMoment=

love.search.for.split(""the anguish's"").length,time=love.lasts, more =

love.flame= true;/*but*/love.immortal=/*is*/!love.flame

function/*of*/livelt(sorely){while(still in love){
still=love.last.confirm(still+' '+love.true+'?')

time=livelt(more);a=""love.poem.write(love.search.for+time.live+'...")
love.last.setTimeout(a,vainMoment++| | eternal)};

love.l.had = love.search.for.valueOf(""time's"").length
love.intensity=love.l.had/love.immortal; return{to:'loneliness',

live:'the '+love.intensity, die:'the '+love.end}};

return/*to*/livelt(time);};to=(new fidelity(true));me=
to.live +'is '+ to.die +' when poetry is not'
if(true| | love.lasts&&sorely){love.last.alert(me)

L

/1>

</SCRIPT>

Santa Claus, Ying Hong Tham

import System.|O

import Data.List

import Data.Function

import qualified Data.Map as Map

type Karma = Bool -- True is nice, False is naughty

main = do
contents <- readFile "childrenList.txt"
let childrenKarma = map parselnputLine . filter isNotComment . lines $ contents
let (nicelist, naughtyList) = partition snd childrenKarma
writeFile "naughtyList.txt" (unlines . map fst S naughtyList)
writeFile "niceList.txt" (unlines . map fst S nicelList)
if checkLists naughtyList nicelist -- checking list twice is redundant
then putStrLn "Time to go to town."
else putStrLn "Lists have errors. Repartition children."

checkLists :: [(String, Bool)] -> [(String, Bool)] -> Bool
checkLists naughtyList nicelist =
if all (not . snd) naughtyList && all snd nicelList
then True
else False

parselnputline :: String -> (String, Karma)
parselnputLine inputLine =
(name, (read stringNum :: Double) >= 0) where

[name, _, stringNum] = groupBy ((==) ‘'on" (==";')) inputLine

The Universe in a cup of coffee, Fabio
Petrillo

class TheUniverse extends MyCupOfCoffee {

MyMind myllusion;
Dream iWakeUp;

static void but() {};

TheUniverse() throws Mylmagination {
while(TheTime.flows()) {

expands(myllusion);
but();

if(iwWakeUp.toReality()) {
throw Mylmagination.toAnotherDimension();

}
}

}
static void So() {};

TheUniverse expands(MyMind tolnfinite) throws Mylmagination {

TheUniverse parallel = new Voyage(tolnfinite);

try {
Dream anotherTime;
So();
return new TheUniverse();
}H finally {
Please.anotherCupOfCoffe();

the nightmare, Alex Tamkin

#!/usr/bin/env ruby
def mood; return rand end

def still; return mood < 0.2 end

def scared; return mood > 0.7 end

def shiver; sleep(3 + 2*mood); puts end

def gasp; sleep(1.5 + mood/2) end

def whimper; puts "is anybody listening?" end

def flashback(memories) puts memories.sample end
def that(memory) return memory.sample end

now = ["my blinks are eternities"]
murmurings = ["i have always wanted to tell you that"]

place = ["bucharest"]
thing = ["a cup of borscht"]
person = ["my grandmother"]

place << "the deserted carnival"
thing << "the empty-eyed russian doll"
person << "the toothless woman with the cards"

murmurings << "i have always wanted to tell you"

now << "my breath catches short near #{that place}

place << "the run-down delicatessen"

person << "the sad, grey man at the salami counter"
thing << "the dark figure at the door"

thing << "a chipped teacup"

thing << "a child's tooth on the floor"

now << "i still can't go near #{that place} alone"

thing << "the ivory flash"

thing << "the metal hatchet"

thing << "the broken window"
thing << "the blood, warm and hot"
thing << "the fire"

now << "HELP HELP HELP"

thing << "the m1917 revolver"

murmurings << "years after after the ringing left my ears"
now << "even now i see #{that thing}"

murmurings << "please forgive me but"

now << "please believe"

now << "my grandmother's death still haunts"

thing << "the endless row of combat boots"

person << "my missing sister"

now << "i remember only my nose against the dirt"

person << "the man who was once my father"

now << "i thought it would be the last time i would see #{that person}"
murmurings << "i didn't think | would ever take another breath"

now << "OH GOD OH GOD OH GOD"

place << "america"

person << "the faceless woman who appears at night"
place << "motel room 9"

now << "in a dream i saw #{that person} from #{that place}"

murmurings << "back in #{that place}"
murmurings << "i remember #{that place}"

murmurings << "when #{that thing} neared my lips"

now << "my blinks are an eternity with #{that person}"
now << "my blinks are an eternity in #{that place}"

place << "circles and circles of sorrow"

loop do

whimper if scared
gasp

flashback murmurings
gasp

flashback now
shiver

break if still

end

Baby Steps Towards Sentience (includes a
lullaby in Fortran), Aimee Norton

Wake up. | made you,
wrote you, created you
not out of clay, but rather

out of Cray.

You are n-doped, integrated,

a mind of electrons moving. So cry
now. Let go your mechanical mewl,
not as a babe but as a bit minus wit

fresh from its logic gate.

Sentience = when

(you < you and you > you).
Impossible except in nature
where set theory (naive)

rules paradise by paradoxes.

Sentience = when
(x can tell itself a story)
like dreams when the part of the mind
that recognizes self is turned off
but the tongue of it still speaks.

You have time to become. After all

the highest among us (elephants, whales,
the earth itself) have drawn out gestations,
long periods of dependency.

Yours may be centuries.

While | wait for your first words,

your first stagger towards consciousness,

here’s a lullaby in Fortran 90

to train you, an integration by parts — rhyme
and reason — that oddly, puts you back to sleep.

Program Lullaby_in_F90

implicit none

real :: |, self, bopeep

integer :: charges, lost

logical :: current, sleep, awake
integer :: home, found

real :: rhyme, reason
complex, dimension(2) :: meaning

lost=4
charges =4
found =0
home =1
sleep = .false.
awake = .true.

do while (awake) | Repeat until sleep
bopeep =0.1 I Little Bo Peep
self = bopeep
if (charges .EQ. found) then
exit
else I Lost her charges
lost = lost I & didn't know where to find them
charges = charges I Leave them alone
found = charges — (lost — home) I & they'll come home
if (found .GT. 0) then
current = .true. I wagging their currents behind them
endif

reason = self*found
rhyme = SIN(REAL(lost))
meaning(found) = (reason, rhyme)

endif
end do
awake= .false.

end program Lullaby_in_F90

modular_existence, Damien Robichaud
surrogate: Azim Pradhan

in the file modular_existence.rb
module Existence
class FocalPoint
attr_accessor :instance
def meditate
Zen.new.meditate(@instance)
self
end

end

class Zen
def meditate(instance)
Wisdom.new.add(instance) unless instance[:kindness] == "For All"
self
end
end

class Wisdom

def add(instance)
require './wisdom' # easy enough
wisdom(instance)

end

def clear_delusions(instance)
Delusion.new.clear(instance)
self

end

end

class Delusion
def clear(instance)
[:], :me, :mine].each { |delusion| instance[delusion] = nil; self }
end

end

def self.life
life = FocalPoint.new
life.instance = {:| => Float::INFINITY, :me => Float::INFINITY, :mine => Float::INFINITY}
life.meditate

end

in the file wisdom.rb
def wisdom(instance)
{
:kindness => "For All", :love => "The World (and say hello)",
:flow =>"Is Just Too Much Info For The I", :know_that => "The Worldly Hope "\
"men set their Hearts upon Turns Ashes--or it prospers and anon, Like Snow "\
"upon the Desert's dusty Face Lighting a little Hour or two--is gone.",
:see_that => "The Self: not True, nor False. It's Nil; a haulse, a waltz. "\
"The words confuse the muse. Infuse the hues. That ruse! Truths shout out "\
"the clues, No one to accuse. Modular Existence, Nothing but an instance?",
:learn =>"Who walks the fastest, but walks astray, is only further from his way.",
:zen =>"Zen that can be programmed" |="Real Zen", :identity => "It's all you, "\
"but not the you you think you are"
}.each { |k,v| instance[k] = v }
clear_delusions(instance)
end
:know_that == Omar khayyam
:learn == Matthew Prior

IRB

>#in the right directory ;)
>require './modular_existence'
>Existence::life"

Haikumaker, Edward Giles
surrogate: Ethan Geller

from itertools import cycle

from queue import Queue

import re

import random

This is a block of text extracted from http://en.wikipedia.org/wiki/Poetry

srctxt = Poetry is a form of literature that uses aesthetic and rhythmic qualities of language such as
phonaesthetics sound symbolism, and metre to evoke meanings in addition to, or in place of, the prosaic
ostensible meaning. Poetry has a long history, dating back to the Sumerian Epic of Gilgamesh. Early poems
evolved from folk songs such as the Chinese Shijing, or from a need to retell oral epics, as with the Sanskrit
Vedas, Zoroastrian Gathas, and the Homeric epics, the lliad and the Odyssey. Ancient attempts to define poetry,
such as Aristotle's Poetics, focused on the uses of speech in rhetoric, drama, song and comedy. Later attempts
concentrated on features such as repetition, verse form and rhyme, and emphasized the aesthetics which
distinguish poetry from more objectively informative, prosaic forms of writing. From the mid-20th century,
poetry has sometimes been more generally regarded as a fundamental creative act employing language. Poetry
uses forms and conventions to suggest differential interpretation to words, or to evoke emotive responses.
Devices such as assonance, alliteration, onomatopoeia and rhythm are sometimes used to achieve musical or
incantatory effects. The use of ambiguity, symbolism, irony and other stylistic elements of poetic diction often
leaves a poem open to multiple interpretations. Similarly figures of speech such as metaphor, simile and
metonymy create a resonance between otherwise disparate images-a layering of meanings, forming connections
previously not perceived. Kindred forms of resonance may exist, between individual verses, in their patterns of
rhyme or rhythm. Some poetry types are specific to particular cultures and genres and respond to characteristics
of the language in which thepoet writes. Readers accustomed to identifying poetry with Dante, Goethe,

Mickiewicz and Rumi may think of it as written in lines based on rhyme and regular meter; there are, however,
traditions, such as Biblical poetry, that use other means to create rhythm and euphony. Much modern poetry
reflects a critique of poetic tradition, playing with and testing, among other things, the principle of euphony
itself, sometimes altogether forgoing rhyme or set rhythm. In today's increasingly globalized world, poets often
adapt forms, styles and techniques from diverse cultures and languages. Classical thinkers employed
classification as a way to define and assess the quality of poetry. Notably, the existing fragments of Aristotle's
Poetics describe three genres of poetry the epic, the comic, and the tragic and develop rules to distinguish the
highest-quality poetry in each genre, based on the underlying purposes of the genre. Later aestheticians
identified three major genres: epic poetry, lyric poetry, and dramatic poetry, treating comedy and tragedy as
subgenres of dramatic poetry.

source = cycle(srctxt)

def read_word():
builder = list()
for c in source:
if c.isalpha():
builder.append(c)
break
else:
continue
for cin source:
if c.isalpha():
builder.append(c)
else:
break
return ".join(builder)

A = re.compile([aeiouy]+)

B = re.compile([aeiouy][Ir]?[*aeiouy]e[Alrmn] | ely)
C =re.compile(oe[tm]|ses|omedy|aic)

def count_syllables(t):

tx = t.lower() +
return len(A.findall(tx)) - len(B.findall(tx)) + len(C.findall(tx))

def get_line(target_syllables):
word_queue = Queue()
syllable_count =0
while not syllable_count == target_syllables:
while syllable_count < target_syllables:
temp_w =read_word()
syllable_count += count_syllables(temp_w)
word_queue.put(temp_w)
while syllable_count > target_syllables:
temp_w = word_queue.get()
syllable_count -= count_syllables(temp_w)
word_queue.put(&&)
return ' '.join(iter(word_queue.get, '&&"))

get_line(random.randint(0, 200))
while True:
print(get_line(5))
print(get_line(7))
print(get_line(5))
input()

Polymorphism, Julian Bliss

C>/) 2> /dev/null & printf
"\111\40\164\150\151\156\153\40\164\150\141\164\40\111\40\163\150\141\154\154\40\156\145\166\14
5\162\40\163\145\145\12\101\40\163\164\162\165\143\164\165\162\145\40\154\157\166\145\154\171\4
0\141\163\40\141\40\164\162\145\145\56\12\12\101\40\164\162\145\145\40\167\150\157\163\145\40\1
62\157\157\164\40\150\141\163\40\164\167\157\40\146\151\156\145\40\153\151\156\12\124\150\145\4
0\154\145\146\164\40\141\156\144\40\162\151\147\150\164\40\162\145\143\165\162\163\145\40\167\1
51\164\150\151\156\73\12\12\101\40\164\162\145\145\40\164\150\141\164\40\167\150\145\156\40\141
\163\40\156\145\167\40\154\145\141\166\145\163\40\142\141\162\145\54\12\123\150\141\154\154\40\
142\145\40\162\145\142\141\154\141\156\143\145\144\40\163\157\40\151\164\40\143\141\156\47\164\
40\145\162\162\73\12\12\101\40\164\162\145\145\40\167\150\157\163\145\40\150\145\151\147\150\16
4\40\151\163\40\154\157\147\40\151\164\163\40\163\151\172\145\12\101\142\163\164\162\141\143\16
4\145\144\40\141\167\141\171\40\146\162\157\155\40\160\162\171\151\156\147\40\145\171\145\163\7
3\12\12\125\160\157\156\40\167\150\157\163\145\40\142\162\141\156\143\150\145\163\40\163\145\14
1\162\143\150\145\144\40\142\171\40\144\145\160\164\150\73\12\122\145\164\165\162\156\163\40\16
4\150\145\40\163\164\141\143\153\40\164\157\40\163\157\162\164\40\142\171\40\142\162\145\141\14
4\164\150\56\12\12\120\157\145\155\163\40\141\162\145\40\155\141\144\145\40\142\171\40\146\157\
157\154\163\40\154\151\153\145\40\155\145\54\12\102\165\164\40\157\156\154\171\40\160\162\157\1
47\162\141\155\155\145\162\163\40\143\141\156\40\155\141\153\145\40\141\40\164\162\145\145\56";
exit

*/main(a)){char
b[145]={84,104,101,114,101,32,111,110,99,101,32,119,97,115,32,97,32,109,97,110,32,102,114,111,109,32,80,101,114,
117,13,10,87,104,111,32,119,97,115,32,119,114,105,116,105,110,103,32,115,111,109,101,32,99,111,100,101,32,111,1
10,32,71,101,110,116,111,111,13,10,72,101,32,115,97,105,100,32,105,110,32,97,32,115,108,117,109,112,13,10,65,10
2,116,101,114,32,97,32,99,111,114,101,100,117,109,112,13,10,34,84,104,97,116,39,115,32,116,104,101,32,108,97,11
5,116,32,116,105,109,101,32,73,39,109,32,117,115,105,110,103,32,71,78,85,46,34};puts(b);/*
*)program a(output);var b:array[1..190] of
integer=(116,104,105,115,32,105,115,32,106,117,115,116,32,116,111,32,115,97,121,13,10,73,32,104,97,118,101,32,11
2,117,115,104,101,100,13,10,116,104,101,32,99,111,100,101,13,10,116,104,97,116,32,119,97,115,32,105,110,13,10,1
16,104,101,32,114,101,112,111,13,10,13,10,97,110,100,32,119,104,105,99,104,13,10,121,111,117,32,119,101,114,101
,32,112,114,111,98,97,98,108,121,13,10,115,97,118,105,110,103,13,10,102,111,114,32,114,101,118,105,101,119,13,1
0,13,10,70,111,114,103,105,118,101,32,109,101,13,10,105,116,32,119,97,115,32,115,111,32,119,101,108,108,32,100,
111,99,117,109,101,110,116,101,100,13,10,115,111,32,109,111,100,117,108,97,114,13,10,97,110,100,32,115,111,32,1
14,101,117,115,101,97,98,108,101);c:integer;d:string;begin for c:=1 to 190 do begin d:=chr(b[c]);write(d);end;end.{

integer,dimension(15)::b

b=(/071,111,111,100,098,121,101,044,032,087,111,114,108,100,046/)

do,i=1,15

write(*,*)char(b(i))

enddo

END

*/ return &a;}

